问题一:初中几何的知识有哪些 几何十大公理
1.过两点有且只有一条直线.
2.两点之间,线段最短.
3.垂线段最短.
4.过一点有且只有一条直线与已知直线垂直.
5.过直线外一点有且只有一条直线与已知直线平行.(平行公理)
6.同位角相等,两直线平行.
7.有两边及其夹角对应相等的两个三角形全等.(SAS)
8.有两角及其夹边对应相等的两个三角形全等.(ASA)
9.三边对应相等的两个三角形全等.(SSS)
10.斜边和一条直角边对应相等的两个直角三角形全等.(HL)
《圆》这一章的结论,都是定理、定义或推论,没有公理
我觉得编教材的时候谁是公理并不重要,重要的是让初中生体会这种从基本事实出发进行推理演绎的妙用,学会逻辑推理的基本方法.
其实全等三角形的判定根本不是公理,但是连欧几里德的几何体系也难免有不完善之处.
所以作为初中教材,基本原则应该是避繁就间,条理清晰.
将一些不易证的结论归为公理,可以使学生抓住主要问题,忽略次要问题.
待掌握了一定的知识和能力再去追究完善的公理体系也并不晚.
教材的编著者这样做,不能不说是花了心思的.
几何学是建立在公理基础上通过推理演绎而成的.因而扎实地掌握公理对学习几何作用极大.现总结了10条初中教材所提及的无需证明的最基本结论作为公理.
问题二:几何学习在初中数学学习中有什么作用? 几何数学是数学体系中一门非常重要的学科,一定要学好来。
问题三:高中几何跟初中几何有什么区别 为初中学的是平面几何,高中学的是立体几何和解析几何。
问题四:初中几何证明有哪些方法? 对于证明题,有三种思考方式:
(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。
(2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。
(3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。
问题五:有关于初中几何的书籍吗 我不太清楚你使用的版本,但可以推荐你去看这样几本书.
《优化设计》《教材全解》《魔法数学》《第二教材》
《点拨》《点中典》等.这些都是相对不错的教辅书籍.
问题六:初中平面几何学习的主要内容是什么 1.轴对称与尺规作图
2.图形的平移与旋转
3.角,相交线,平行线
3.三角形(高,中线,角平分线的运用)
4.四边形
5.图形的相似与全等(主要指三角形)
6.解直角三角形(三角函数之类的)
7.圆
差不多就是这些吧,各个省市可能有所不同。
问题七:初中几何有多难 初中几何不算难,因为都是比较有逻辑的,你要真正的静下来好好的学习会越来越感兴趣的。不要害怕开头。我初中的数学挺好的,一般都是130以上。只要你小心一点满分也不算太难。
问题八:初中几何里面需要学些什么才能跟的上高中数学知识? 成人高考..攻...
我本来是一个15岁的中学生,现在读初三。很擅长数学
关于几何,你要用到的不只是四边形而已。
高中要讲圆的标准方程
当然要用到函数和圆的知识
还有高中的好多思想都和初中有密切的联系。
不是我夸张
你想学好高中的知识,必须先从初中入手。
因为无论是几何还是代数,初中的东西都是基础。
像你那样好高骛远,高中的知学着也费劲
还有,就是关于你说的有用和无用。
我认为,数学的知识没有什么有用和无用。
如果把科学分成有用和无用的话,显然你的功利心极强。
这样的功利心,是无法也不能学好一门科学的。
知识的百分之九十九都是储备的。说不定什么时候能用上。
你认为没用的东西,到了恰当的时候就有用。
就是你这样毛毛草草的学了初中数学,高中未必能学好。
即使高中能学好,大学的时候,你的弊端还是要不断显露出来的。
你即使没见过金字塔,也大概知道金字塔什么样。金字塔的底非常大,而越往高越小。
金字塔结结实实,经历了风风雨雨,依然如故。
学知识也是这样啊,就像金字塔所暗示的,必须要重视基础
这样你的知识才不会出现断层,你知识的金字塔才不会倒下。
我给你的建议:刻苦的学习,
毕竟你是一个成人。应该比孩子们强许多。
至于哪部分有用的问题,我想说的是:全都有用。
一步一个脚印,打下扎实的基础,相信你会成功的
初中数学的几何有哪些内容?
一看到几何,想必大家头都大了。觉得几何难学的时候,不妨整理好几何的知识点,自己研究,慢慢的弄懂。下面是我分享给大家的初二数学上册几何知识,希望大家喜欢!
初二数学上册几何知识一
1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三角形的分类
3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
7、高线、中线、角平分线的意义和做法
8、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
9、三角形内角和定理:三角形三个内角的和等于180?
推论1直角三角形的两个锐角互余
推论2三角形的一个外角等于和它不相邻的两个内角和
推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半
10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
11、三角形外角的性质
(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;
(2)三角形的一个外角等于与它不相邻的两个内角和;
(3)三角形的一个外角大于与它不相邻的任一内角;
(4)三角形的外角和是360?。
初二数学上册几何知识二
四边形(含多边形)知识点、概念总结
一、平行四边形的定义、性质及判定
1、两组对边平行的四边形是平行四边形。
2、性质:
(1)平行四边形的对边相等且平行
(2)平行四边形的对角相等,邻角互补
(3)平行四边形的对角线互相平分
3、判定:
(1)两组对边分别平行的四边形是平行四边形
(2)两组对边分别相等的四边形是平行四边形
(3)一组对边平行且相等的四边形是平行四边形
(4)两组对角分别相等的四边形是平行四边形
(5)对角线互相平分的四边形是平行四边形
4、对称性:平行四边形是中心对称图形
二、矩形的定义、性质及判定
1、定义:有一个角是直角的平行四边形叫做矩形
2、性质:矩形的四个角都是直角,矩形的对角线相等
3、判定:
(1)有一个角是直角的平行四边形叫做矩形
(2)有三个角是直角的四边形是矩形
(3)两条对角线相等的平行四边形是矩形
4、对称性:矩形是轴对称图形也是中心对称图形。
初二数学上册几何知识三
菱形的定义、性质及判定
1、定义:有一组邻边相等的平行四边形叫做菱形
(1)菱形的四条边都相等
(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角
(3)菱形被两条对角线分成四个全等的直角三角形
(4)菱形的面积等于两条对角线长的积的一半
2、s菱=争6(n、6分别为对角线长)
3、判定:
(1)有一组邻边相等的平行四边形叫做菱形
(2)四条边都相等的四边形是菱形
(3)对角线互相垂直的平行四边形是菱形
4、对称性:菱形是轴对称图形也是中心对称图形
四、正方形定义、性质及判定
1、定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形
2、性质:
(1)正方形四个角都是直角,四条边都相等
(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
(3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形
(4)正方形的对角线与边的夹角是45?
(5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形
3、判定:
(1)先判定一个四边形是矩形,再判定出有一组邻边相等
(2)先判定一个四边形是菱形,再判定出有一个角是直角
4、对称性:正方形是轴对称图形也是中心对称图形
五、梯形的定义、等腰梯形的性质及判定
1、定义:一组对边平行,另一组对边不平行的四边形是梯形。两腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形
2、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等
3、等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形
4、对称性:等腰梯形是轴对称图形
六、三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半。
七、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点。
八、依次连接任意一个四边形各边中点所得的四边形叫中点四边形。
猜你喜欢:
1. 初中数学三角形知识点总结
2. 初二数学基本知识汇总
3. 初中数学知识点归纳
4. 初二年级数学公式知识点归纳
5. 八年级上册数学总复习题有哪些
几何主要有以下几点:1,识别各种平面图形和立体图形,这你应该非常熟悉.2,图形的平移、旋转和轴对称,这个考察你的空间想象的能力,多做一些题.3,三角形的全等和相似,要会证明,注意要有完整的过程和严密的步骤,背过证明三角形全等的五种方法和证明相似的四种方法;还有像等腰三角形、直角三角形和黄金三角形的性质,要会应用,这在证明题中会有很大的帮助.4,四边形,把握好平行四边形、长方形、正方形、菱形和梯形的概念,选择体里会拿着它们之间的微小差异而大做文章,注意它们的判定和性质,证明题里也会考到.5,圆,我这里没有细学,因为这里不是我们中考的重点,但是圆的难度会很大,它的知识点很多、很碎,圆的难题就是由许许多多细小的点构成的.
评论列表(3条)
我是奥特号的签约作者“慕子轩”
本文概览:问题一:初中几何的知识有哪些 几何十大公理 1.过两点有且只有一条直线. 2.两点之间,线段最短. 3.垂线段最短. 4.过一点有且只有一条直线与已知直线垂直...
文章不错《初中几何有什么用》内容很有帮助