初三数学的知识点梳理

对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如。学习需要持之以恒。下面是我给大家整理的一些初三数学的知识点,希望对大家有所帮助。

九年级下册数学知识点归纳

★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。

☆内容提要☆

一、圆的基本性质

1.圆的定义(两种)

2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。

3.“三点定圆”定理

4.垂径定理及其推论

5.“等对等”定理及其推论

6.与圆有关的角:⑴圆心角定义(等对等定理)

⑵圆周角定义(圆周角定理,与圆心角的关系)

⑶弦切角定义(弦切角定理)

二、直线和圆的位置关系

1.切线的性质(重点)

2.切线的判定定理(重点)

3.切线长定理

三、圆换圆的位置关系

1.五种位置关系及判定与性质:(重点:相切)

2.相切(交)两圆连心线的性质定理

3.两圆的公切线:⑴定义⑵性质

四、与圆有关的比例线段

1.相交弦定理

2.切割线定理

五、与和正多边形

1.圆的内接、外切多边形(三角形、四边形)

2.三角形的外接圆、内切圆及性质

3.圆的外切四边形、内接四边形的性质

4.正多边形及计算

中心角:初中数学复习提纲

内角的一半:初中数学复习提纲(右图)

(解Rt△OAM可求出相关元素,初中数学复习提纲、初中数学复习提纲等)

六、一组计算公式

1.圆周长公式

2.圆面积公式

3.扇形面积公式

4.弧长公式

5.弓形面积的计算 方法

6.圆柱、圆锥的侧面展开图及相关计算

初三下册数学知识点 总结

一、锐角三角函数

正弦等于对边比斜边

余弦等于邻边比斜边

正切等于对边比邻边

余切等于邻边比对边

正割等于斜边比邻边

二、三角函数的计算

幂级数

c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)

c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)

它们的各项都是正整数幂的幂函数,其中c0,c1,c2,...cn...及a都是常数,这种级数称为幂级数.

泰勒展开式(幂级数展开法)

f(x)=f(a)+f'(a)/1!.(x-a)+f''(a)/2!.(x-a)2+...f(n)(a)/n!.(x-a)n+...

三、解直角三角形

1.直角三角形两个锐角互余。

2.直角三角形的三条高交点在一个顶点上。

3.勾股定理:两直角边平方和等于斜边平方

四、利用三角函数测高

1、解直角三角形的应用

(1)通过解直角三角形能解决实际问题中的很多有关测量问.

如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.

(2)解直角三角形的一般过程是:

①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).

②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.

初三数学学习技巧

重视构建知识网络——宏观把握数学框架

要学会构建知识网络,数学概念是构建知识网络的出发点,也是数学中考[微博]考查的重点。因此,我们要掌握好代数中的数、式、不等式、方程、函数、三角比、统计和几何中的平行线、三角形、四边形、圆的概念、分类、定义、性质和判定,并会应用这些概念去解决一些问题。

重视夯实数学双基——微观掌握知识技能

在复习过程中夯实数学基础,要注意知识的不断深化,重视强化题组训练——感悟数学思想方法

除了做基础训练题、平面几何每日一题外,还可以做一些综合题,并且养成解题后 反思 的习惯。反思自己的思维过程,反思知识点和解题技巧,反思多种解法的优劣,反思各种方法的纵横联系。而总结出它所用到的数学思想方法,并把思想方法相近的题目编成一组,不断提炼、不断深化,做到举一反三、触类旁通。逐步学会观察、试验、分析、猜想、归纳、类比、联想等思想方法,主动地发现问题和提出问题。

重视建立“病例档案”——做到万无一失

准备一本数学学习“病例卡”,把平时犯的错误记下来,找出“病因”开出“处方”,并且经常地拿出来看看、想想错在哪里,为什么会错,怎么改正,这样到中考时你的数学就没有什么“病例”了。我们要在教师的指导下做一定数量的数学习题,积累解题 经验 、总结解题思路、形成解题思想、催生解题灵感、掌握 学习方法 。

初三数学的知识点梳理相关 文章 :

★ 初三数学知识点归纳人教版

★ 初三数学知识点考点归纳总结

★ 初三数学知识点归纳总结

★ 九年级上册数学知识点归纳整理

★ 初三数学中考复习重点章节知识点归纳

★ 初三数学知识点归纳

★ 最新初三数学知识点总结大全

★ 初三中考数学知识点归纳总结

★ 初三数学重点知识点归纳

初中数学考试重点知识归纳整理

2020年的中考就要到了,同学们可以利用这个寒假系统的复习一下初中数学的重要知识点,接下来给大家分享初一到初三数学知识点,供参考。

数轴

1.数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴。

数轴的三要素:原点,单位长度,正方向。

2.数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数。(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数。)

3.用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。

概率

1.随机事件:在一定的条件下可能发生也可能不发生的事件,叫做随机事件。

2.互斥事件:不可能同时发生的两个事件叫做互斥事件。

3.对立事件:即必有一个发生的互斥事件叫做对立事件。

4.必然事件:那些无需通过实验就能够预先确定它们在每一次实验中都一定会发生的事件称为必然事件。

5.不可能事件:那些在每一次实验中都一定不会发生的事件称为不可能事件。

解一元二次方程的步骤

1.配方法的步骤:

先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式。

2.分解因式法的步骤:

把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式。

3.公式法

就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c。

平行线

1.在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。

2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

3.如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

4.判定两条直线平行的方法:

(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。

(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。

(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。

5.平行线的性质

(1)两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。

(2)两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。

(3)两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。

全等三角形

1.经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等。

2.三角形全等的判定

(1)SSS(边边边)

三边对应相等的三角形是全等三角形。

(2)SAS(边角边)

两边及其夹角对应相等的三角形是全等三角形。

(3)ASA(角边角)

两角及其夹边对应相等的三角形全等。

(4)AAS(角角边)

两角及其一角的对边对应相等的三角形全等。

(5)RHS(直角、斜边、边)

在一对直角三角形中,斜边及另一条直角边相等。

3.角平分线

(1)从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线。

(2)性质

①角平分线分得的两个角相等,都等于该角的一半。

②角平分线上的点到角的两边的距离相等。

有理数

1.定义:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。

2.数轴:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。

3.相反数:相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。

4.绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

5.有理数的加减法

同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

6.有理数的乘法

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘,积为0.例:0×1=0

7.有理数的除法

除以一个不为0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。0除

以任何一个不为0的数,都得0。

8.有理数的乘方

求n个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂。其中,a叫做底数,n叫做指数。当a?看作a的n次乘方的结果时,也可读作“a的n次幂”或“a的n次方”。

初三数学重点知识点归纳大全

其实要学好初中数学并不难,而且初中的知识掌握起来比高中容易多了。想要学好数学的话就要对所学知识点进行一个总结归纳,这样才能加深知识点的记忆。

初中数学考试重点知识

 专题一 数与式

 考点1.1、实数的概念及分类

 1、 实数的分类

 有理数:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373...,,.

 无理数:无限不环循小数叫做无理数如:?,-,0.1010010001...(两个1之间依次多1个0).

 实数:有理数和无理数统称为实数.

 2、无理数

 在理解无理数时,要抓住"无限不循环"这一时之,它包含两层意思:一是无限小数;二是不循环.二者缺一不可.归纳起来有四类:

 (1)开方开不尽的数,如等;

 (2)有特定意义的数,如圆周率?,或化简后含有?的数,如+8等;

 (3)有特定结构的数,如0.1010010001...等;

 (4)某些三角函数,如sin60o等

 注意:判断一个实数的属性(如有理数、无理数),应遵循:一化简,二辨析,三判断.要注意:"神似"或"形似"都不能作为判断的标准.

 3、非负数:正实数与零的统称。(表为:x?0)

 常见的非负数有:

 性质:若干个非负数的和为0,则每个非负担数均为0。

 4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

 解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

 ①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴("三要素")

 ②任何一个有理数都可以用数轴上的一个点来表示。

 ③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

 作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

 5、相反数

 实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。即:(1)实数的相反数是.(2)和互为相反数.

 6、绝对值

 一个数的绝对值就是表示这个数的点与原点的距离,|a|?0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a?0;若|a|=-a,则a?0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

 (1)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即:﹝另有两种写法﹞

 (2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值就是数轴上表示这个数的点到原点的距离.

 ☆(3)几个非负数的和等于零则每个非负数都等于零,例如:若,则,,.

 注意:│a│?0,符号"││"是"非负数"的标志;数a的绝对值只有一个;处理任何类型的题目,只要其中有"││"出现,其关键一步是去掉"││"符号。

 7、倒数

 如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。

 即(1)实数(?0)的倒数是.

 (2)和互为倒数。

 (3)注意0没有倒数.

 8、有效数字

 一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

 9、科学记数法

 把一个数写做的形式,其中,n是整数,这种记数法叫做科学记数法。

 (1)确定:是只有一位整数数位的数.

 (2)确定n:当原数?1时,等于原数的整数位数减1;;当原数<1时,是负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数位上的零)。

 例如:-40700=-4.07?105,0.000043=4.3?10ˉ5.

 (3).近似值的精确度:一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位

 (4)按精确度或有效数字取近似值,一定要与科学计数法有机结合起来.

 10、实数大小的比较

 知识1、数轴

 规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

 解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

 知识2、实数大小比较的几种常用方法

 (1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

 (2)求差比较:设a、b是实数,

 (3)求商比较法:设a、b是两正实数,

 (4)绝对值比较法:设a、b是两负实数,则。

 (5)平方法:设a、b是两负实数,则。

 11、实数的运算 (做题的基础,分值相当大)

 1、加法交换律

 2、加法结合律

 3、乘法交换律

 4、乘法结合律

 5、乘法对加法的分配律

 6、实数的运算顺序

 1. 先算乘方开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

 2. (同级运算)从"左"到"右"(如5?5);(有括号时)由"小"到"中"到"大"。

 12、有理数的运算:

 加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。

 减法:减去一个数,等于加上这个数的相反数。

 乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。

 除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。

 乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

 考点1.2、实数与二次根式

 1、平方根

 如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。

 一个正数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

 正数a的平方根记做""。

 2、算术平方根

 正数a的正的平方根叫做a的算术平方根,记作""。

 正数和零的算术平方根都只有一个,零的算术平方根是零。

 ;注意的双重非负性:

 -(<0) 0

 注意:算术平方根与绝对值

 ① 联系:都是非负数,=│a│

 ②区别:│a│中,a为一切实数;中,a为非负数。

 3、算术平方根的估算方法:两端逼近法.

 例如:估算.(精确到0.1)∵?.又∵,

 又∵6更靠近5.76,?4、立方根

 如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。

 一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

 注意:,这说明三次根号内的负号可以移到根号外面。

 二次根式

 5、二次根式

 式子叫做二次根式,二次根式必须满足:含有二次根号"";被开方数a必须是非负数。

 6、最简二次根式

 若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。

 化二次根式为最简二次根式的方法和步骤:

 (1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。

 (2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。

 7、同类二次根式

 几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。

 8、二次根式的性质

 9、根式运算法则:

 ⑴加法法则(合并同类二次根式);

 ⑵乘、除法法则;

 ⑶分母有理化:A.;B.;C..

 10.指数

 ⑴ (-幂,乘方运算)

 ① a>0时,>0;②a<0时,>0(n是偶数),<0(n是奇数)

 ⑵零指数:=1(a?0)

 负整指数:=1/(a?0,p是正整数)

 11、二次根式混合运算

 二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。

 考点1.3、代数式与整式

 1、代数式

 用运算符号把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。

 表示方根的代数式叫做根式。

 含有关于字母开方运算的代数式叫做无理式。注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。

 2、单项式

 只含有数字与字母的积的代数式叫做单项式。

 注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如,这种表示就是错误的,应写成。一个单项式中,所有字母的指数的和叫做这个单项式的次数。如是6次单项式。

 注意:系数与指数:区别与联系:①从位置上看;②从表示的意义上看

 其含义有:

 ①不含有加、减运算符号.

 ②字母不出现在分母里.

 ③单独的一个数或者字母也是单项式.

 ④不含"符号".多项式3、多项式

 几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。

 单项式和多项式统称整式。

 用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。

 注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。

 (2)求代数式的值,有时求不出其字母的值,需要利用技巧,"整体"代入。

 4、同类项

 所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。

 条件:①字母相同;②相同字母的指数相同

 合并依据:乘法分配律

 5、去括号法则

 (1)括号前是"+",把括号和它前面的"+"号一起去掉,括号里各项都不变号。

 (2)括号前是"﹣",把括号和它前面的"﹣"号一起去掉,括号里各项都变号。

 6、整式的运算法则

 整式的加减法:(1)去括号;(2)合并同类项。

 注意:(1)单项式乘单项式的结果仍然是单项式。

 (2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。

 (3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。

 (4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。

 (5)公式中的字母可以表示数,也可以表示单项式或多项式。(6)(7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的。

初中数学学习方法

 一:平时的数学学习:

 ○1课前认真预习.预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十.带着预习中不明白的问题去听老师讲课,来解答这类的问题.预习还可以使听课的整体效率提高.具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟.在时间允许的情况下,还可以将练习册做完.

 ○2让数学课学与练结合.在数学课上,光听是没用的.当老师让同学去黑板上演算时,自己也要在草稿纸上练.如果遇到不懂的难题,一定要提出来,不能不求甚解.否则考试遇到类似的题目就可能不会做.听老师讲课时一定要全神贯注,要注意细节问题,否则?千里之堤,毁于蚁穴?.

 ○3课后及时复习.写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题.可以根据自己的需要选择适合自己的课外书.其课外题内容大概就是今天上的课.

 ○4单元测验是为了检测近期的学习情况.其实分数代表的是你的过去,关键的是对于每次考试的总结和吸取教训,是为了让你在期中、期末考得更好.老师经常会在没通知的情况下进行考试,所以要及时做到?课后复习?.

 二:期中期末数学复习:

 要将平时的单元检测卷订成册,并且将错题再做一遍.如果整张试卷考得都不好,那么可以复印将试卷重做一遍.除试卷外,还可以将作业上的错题、难题、易错题重做一遍.另外,自己还可以做2-3张期末模拟卷.

 三:数学考试技巧:

 如果想得高分,在选择、填空、计算题上是不能丢分的.在考数学的时候思想不能开小差,而且遇到难题时不能想?没考好怎么办啊?等内容.在通常情况下,期末考试的难题都是不知道怎么做,但有可能突然明白的那种.遇到这种题目要沉着冷静,利用题目给你的一切条件进行分析,如这次考试有两个空白的钟,还有去年七年级期末的几题填空.这些条件都对你的解题有很大帮助.在期中、期末考试中有充足的时间,将自己的速度压下来,不是越快越好,争取一次做成功.大概留35分钟的时间检查.

 最终提醒大家:多做题有一定作用,但上课听讲、认真答题及提高准确率、总结经验才是最重要的.还要将所学的知识用到生活中去,做到学以致用.当你运用数学知识解决了生活中实际问题的时候,你就会感受到学习数学的快乐.

初中数学学习技巧

 其实要学好数学并不难,而且初中的知识掌握起来比高中容易多了。上课必须听讲,不管你多么厉害,上课不听讲就不行,因为老师有时候是会讲一些书本上没有的知识或者是他们自己的经验技巧。

 课后作业必须做,也不要求你再去自己买题来做,你只需要认认真真的完成老师布置的作业就行。你需要听老师评讲作业,不管你是对的还是错的,都要听,老师就是在这个时候讲方法,所以说上课的专心最重要。

 考试卷子也是一样,不要因为你是对的就不听讲了,老师讲的有时候不仅仅是那道题。

 最重要的就是上面那几点,只要你做到了,你的成绩绝对不会差!最后就是多与同学交流,互相印证答题技巧,不懂多问。

猜你喜欢:

1. 中考数学知识点总结

2. 初中数学基础知识点总结

3. 初中数学知识点归纳

4. 初中数学基础知识点总结

5. 初中数学知识要点口诀总汇

数学 最重要的就是 知识点 ,下面我就大家整理一下初三数学重点知识点归纳大全,仅供参考。

函数易错知识点

1:各个待定系数表示的的意义。

2:熟练掌握各种函数解析式的求法,有几个的待定系数就要几个点值。

3:利用图像求不等式的解集和方程(组)的解,利用图像性质确定增减性。

4:两个变量利用函数模型解实际问题,注意区别方程、函数、不等式模型解决不等领域的问题。

5:利用函数图象进行分类(平行四边形、相似、直角三角形、等腰三角形)以及分类的求解方法。

方程(组)与不等式(组)

1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。

2:运用等式性质时,两边同除以一个数必须要注意不能为O的情况,还要关注解方程与方程组的基本思想。消元降次的主要陷阱在于消除了一个带X公因式时回头检验!

3:运用不等式的性质3时,容易忘记改不变号的方向而导致结果出错。

4:关于一元二次方程的取值范围的题目易忽视二次项系数不为0。

5:关于一元一次不等式组有解、无解的条件易忽视相等的情况。

6:解分式方程时首要步骤去分母,分数相相当于括号,易忘记根检验,导致运算结果出错。

7:不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。

8:利用函数图象求不等式的解集和方程的解。

6:与坐标轴交点坐标一定要会求。面积最大值的求解方法,距离之和的最小值的求解方法,距离之差最大值的求解方法。

7:数形结合思想方法的运用,还应注意结合图像性质解题。函数图象与图形结合学会从复杂图形分解为简单图形的方法,图形为图像提供数据或者图像为图形提供数据。

8:自变量的取值范围有:二次根式的被开方数是非负数,分式的分母不为0,0指数底数不为0,其它都是全体实数。

初三数学学习法则

认真学习,研究教材,研究考试,把握教学的要求,了解教学中的重点和学生学习中的难点,提高自身的业务素养。另外也要根据当前教改的要求、学生的实际,研究教学方法,达到提高教学效率的目的。

要注重知识的发生发展过程,全面、准确的理解基本概念,切忌就事论事,然后通过大量的练习来“理解”、“掌握”概念,这种做法只能起到事倍功半的效果,不但“记不住”大量的数学概念,而且不会灵活地运用概念解决问题。

在平时的学习例题时,要注重分析解决问题的方法,纠正不研究的学习过程,只追求结果的错误学习方法;要注重数学思想方法的渗透,废弃死记硬背的学习方式。数学思想方法是数学的灵魂,数学的精髓,它是培养学生创新意识、实践能力的源泉,因此也是中考的重点。在初中阶段要注意方程思想、函数思想、整体待换思想、化归思想、数形结合思想、分类讨论思想、换元法、配方法、待定系数法等数学思想方法,这样才能提高学生分析问题解决问题的能力。

(10)

猜你喜欢

发表回复

本站作者才能评论

评论列表(3条)

  • 春翌岍的头像
    春翌岍 2025年10月24日

    我是奥特号的签约作者“春翌岍”

  • 春翌岍
    春翌岍 2025年10月24日

    本文概览:对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如。学习需要持之以恒。下面是我给大家整理的一些初三数学的知识点...

  • 春翌岍
    用户102409 2025年10月24日

    文章不错《初三数学的知识点梳理》内容很有帮助

联系我们:

邮件:奥特号@gmail.com

工作时间:周一至周五,9:30-17:30,节假日休息

关注微信