网上有关“求:人教版数学必修一A版教案”话题很是火热,小编也是针对求:人教版数学必修一A版教案寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
新课标人教A版数学必修1教案完整版,共73页,这里无法全部复制,你到我们网站去下载吧,百度搜索“飞翔教学资源网”就可以到我们网站
第一章 集合与函数概念
一. 课标要求:
本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁
性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力 .
函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识 .
1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.
2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.
3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.
4、能在具体情境中,了解全集与空集的含义.
5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力.
6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集 .
7. 能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用 .
8. 学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法 .
9. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.
10. 通过具体实例,了解简单的分段函数,并能简单应用.
11. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.
12. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.
13. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例.
二. 编写意图与教学建议
1. 教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力. 教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.
教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.
2. 教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念. 教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。
3. 教材在例题、习题教学中注重运用集合的观点研究、处理数学问题,这一观点,一直贯穿到以后的数学学习中.
4. 在例题和习题的编排中,渗透了集合中的分类思想,让学生体会到分类思想在生活中和数学中的广泛运用,这是学生在初中阶段所缺少的. 在教学中,一定要循序渐进,从繁到难,逐步渗透这方面的训练 .
5. 教材对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不做提倡,教师要准确把握这方面的要求,防止拨高教学.
6. 函数的表示是本章的主要内容之一,教材重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念. 在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法 .
7. 教材将映射作为函数的一种推广,进行了逻辑顺序上的调整,体现了特殊到一般的思维规律,有利于学生对函数概念学习的连续性 .
8. 教材加强了函数与信息技术整合的要求,通过电脑绘制简单函数动态图象,使学生初步感受到信息技术在函数学习中的重要作用.
9. 为了体现教材的选择性,在练习题安排上加大了弹性,教师应根据学生实际,合理地取舍.
三. 教学内容及课时安排建议
本章教学时间约13课时。
1.1 集合 4课时
1.2 函数及其表示 4课时
1.3 函数的性质 3课时
实习作业 1课时
复习 1课时
§1.1.1集合的含义与表示
一. 教学目标:
l.知识与技能
(1)通过实例,了解集合的含义,体会元素与集合的属于关系;
(2)知道常用数集及其专用记号;
(3)了解集合中元素的确定性.互异性.无序性;
(4)会用集合语言表示有关数学对象;
(5)培养学生抽象概括的能力.
2. 过程与方法
(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.
(2)让学生归纳整理本节所学知识.
3. 情感.态度与价值观
使学生感受到学习集合的必要性,增强学习的积极性.
二. 教学重点.难点
重点:集合的含义与表示方法.
难点:表示法的恰当选择.
三. 学法与教学用具
1. 学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.
2. 教学用具:投影仪.
四. 教学思路
(一)创设情景,揭示课题
1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?
引导学生回忆.举例和互相交流. 与此同时,教师对学生的活动给予评价.
2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容.
(二)研探新知
1.教师利用多媒体设备向学生投影出下面9个实例:
(1)1—20以内的所有质数;
(2)我国古代的四大发明;
(3)所有的安理会常任理事国;
(4)所有的正方形;
(5)海南省在2004年9月之前建成的所有立交桥;
(6)到一个角的两边距离相等的所有的点;
(7)方程的所有实数根;
(8)不等式的所有解;
(9)国兴中学2004年9月入学的高一学生的全体.
2.教师组织学生分组讨论:这9个实例的共同特征是什么?
3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义.
一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.
4.教师指出:集合常用大写字母A,B,C,D,…表示,元素常用小写字母…表示.
(三)质疑答辩,排难解惑,发展思维
1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅
集合的概念
一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元。如(1)阿Q正传中出现的不同汉字(2)全体英文大写字母。任何集合是它自身的子集.
元素与集合的关系:
元素与集合的关系有“属于”与“不属于”两种。
集合的分类:
并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}
交集: 以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}
差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)
注:空集包含于任何集合,但不能说“空集属于任何集合”.
某些指定的对象集在一起就成为一个集合,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。空集是任何集合的子集,是任何非空集的真子集,任何集合是它本身的子集,子集,真子集都具有传递性。
『说明一下:如果集合 A 的所有元素同时都是集合 B 的元素,则 A 称作是 B 的子集,写作 A ? B。若 A 是 B 的子集,且 A 不等於 B,则 A 称作是 B 的真子集,写作 A ? B。
所有男人的集合是所有人的集合的真子集。』
集合的性质:
确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。
互异性:集合中任意两个元素都是不同的对象。不能写成{1,1,2},应写成{1,2}。
无序性:{a,b,c}{c,b,a}是同一个集合。
集合有以下性质:若A包含于B,则A∩B=A,A∪B=B
集合的表示方法:常用的有列举法和描述法。
1.列举法:常用于表示有限集合,把集合中的所有元素一一列举出来,写在大括号内,这种表示集合的方法叫做列举法。{1,2,3,……}
2.描述法:常用于表示无限集合,把集合中元素的公共属性用文字,符号或式子等描述出来,写在大括号内,这种表示集合的方法叫做描述法。{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0<x<π}
3.图式法:为了形象表示集合,我们常常画一条封闭的曲线(或者说圆圈),用它的内部表示一个集合。
常用数集的符号:
(1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N
(2)非负整数集内排除0的集,也称正整数集,记作N+(或N*)
(3)全体整数的集合通常称作整数集,记作Z
(4)全体有理数的集合通常简称有理数集,记作Q
(5)全体实数的集合通常简称实数集,记作R
集合的运算:
1.交换律
A∩B=B∩A
A∪B=B∪A
2.结合律
(A∩B)∩C=A∩(B∩C)
(A∪B)∪C=A∪(B∪C)
3.分配律
A∩(B∪C)=(A∩B)∪(A∩C)
A∪(B∩C)=(A∪B)∩(A∪C)
2德.摩根律
Cs(A∩B)=CsA∪CsB
Cs(A∪B)=CsA∩CsB
3“容斥原理”
在研究集合时,会遇到有关集合中的元素个数问题,我们把有限集合A的元素个数记为card(A)。例如A={a,b,c},则card(A)=3
card(A∪B)=card(A)+card(B)-card(A∩B)
card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C)
1985年德国数学家,集合论创始人康托尔谈到集合一词,列举法和描述法是表示集合的常用方式。
吸收律
A∪(A∩B)=A
A∩(A∪B)=A
求补律
A∪CsA=S
A∩CsA=Φ
[重点]
理解集合的概念,集合的性质,元素与集合的表示方法及其关系。
集合的子、交、并、补的意义及其运用。掌握有关术语和符号,准确使用集合语言表述、研究、处理相关数学问题。
[难点]
有关集合的各个概念的涵义以及这些概念相互之间的区别与联系。
准确理解、运用较多的新概念、新符号表示处理数学问题。
一、选择题
1.下列八个关系式①{0}= ② =0 ③ { } ④ { } ⑤{0} ⑥0 ⑦ {0} ⑧ { }其中正确的个数( )
(A)4 (B)5 (C)6 (D)7
2.集合{1,2,3}的真子集共有( )
(A)5个 (B)6个 (C)7个 (D)8个
3.集合A={x } B={ } C={ }又 则有( )
(A)(a+b) A (B) (a+b) B (C)(a+b) C (D) (a+b) A、B、C任一个
4.设A、B是全集U的两个子集,且A B,则下列式子成立的是( )
(A)CUA CUB (B)CUA CUB=U
(C)A CUB= (D)CUA B=
5.已知集合A={ } B={ }则A =( )
(A)R (B){ }
(C){ } (D){ }
6.下列语句:(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};(3)方程(x-1)2(x-2)2=0的所有解的集合可表示为{1,1,2};(4)集合{ }是有限集,正确的是( )
(A)只有(1)和(4) (B)只有(2)和(3)
(C)只有(2) (D)以上语句都不对
7.已知A={1,2,a2-3a-1},B={1,3},A {3,1}则a等于( )
(A)-4或1 (B)-1或4 (C)-1 (D)4
8.设U={0,1,2,3,4},A={0,1,2,3},B={2,3,4},则(CUA) (CUB)=( )
(A){0} (B){0,1}
(C){0,1,4} (D){0,1,2,3,4}
9.设S、T是两个非空集合,且S T,T S,令X=S 那么S X=( )
(A)X (B)T (C) (D)S
10.设A={x },B={x },若A B={2,3,5},A、B分别为( )
(A){3,5}、{2,3} (B){2,3}、{3,5}
(C){2,5}、{3,5} (D){3,5}、{2,5}
11.设一元二次方程ax2+bx+c=0(a<0)的根的判别式 ,则不等式ax2+bx+c 0的解集为( )
(A)R (B)
(C){ } (D){ }
(A)P Q
(B)Q P
(C)P=Q (D)P Q=
12.已知P={ },Q={ ,对于一切 R成立},则下列关系式中成立的是( )
13.若M={ },N={ Z},则M N等于( )
(A) (B){ } (C){0} (D)Z
14.下列各式中,正确的是( )
(A)2
(B){ }
(C){ }
(D){ }={ }
15.设U={1,2,3,4,5},A,B为U的子集,若A B={2},(CUA) B={4},(CUA) (CUB)={1,5},则下列结论正确的是( )
(A)3 (B)3
(C)3 (D)3
16.若U、 分别表示全集和空集,且(CUA) A,则集合A与B必须满足( )
(A) (B)
(C)B= (D)A=U且A B
17.已知U=N,A={ },则CUA等于( )
(A){0,1,2,3,4,5,6} (B){1,2,3,4,5,6}
(C){0,1,2,3,4,5} (D){1,2,3,4,5}
18.二次函数y=-3x2+mx+m+1的图像与x轴没有交点,则m的取值范围是( )
(A){ } (B){ }
(C){ } (D){ }
19.设全集U={(x,y) },集合M={(x,y) },N={(x,y) },那么(CUM) (CUN)等于( )
(A){(2,-2)} (B){(-2,2)}
(C) (D)(CUN)
20.不等式 <x2-4的解集是( )
(A){x } (B){x }
(C){ x } (D){ x }
二、填空题
1. 在直角坐标系中,坐标轴上的点的集合可表示为
2. 若A={1,4,x},B={1,x2}且A B=B,则x=
3. 若A={x } B={x },全集U=R,则A =
4. 若方程8x2+(k+1)x+k-7=0有两个负根,则k的取值范围是
5. 集合{a,b,c}的所有子集是 真子集是 ;非空真子集是
6. 方程x2-5x+6=0的解集可表示为
方程组
7.设集合A={ },B={x },且A B,则实数k的取值范围是
。
8.设全集U={x 为小于20的非负奇数},若A (CUB)={3,7,15},(CUA) B={13,17,19},又(CUA) (CUB)= ,则A B=
9.设U={三角形},M={直角三角形},N={等腰三角形},则M N=
M N= CUM=
CUN= CU(M N)=
10.设全集为 ,用集合A、B、C的交、并、补集符号表图中的阴影部分。
(1) (2)
(3)
三、解答题
1.设全集U={1,2,3,4},且={ x2-5x+m=0,x U}若CUA={1,4},求m的值。
2.已知集合A={a 关于x的方程x2-ax+1=0,有实根},B={a 不等式ax2-x+1>0对一切x R成立},求A B。
3.已知集合A={a2,a+1,-3},B={a-3,2a-1,a2+1}, 若A B={-3},求实数a。
4.已知方程x2-(k2-9)+k2-5k+6=0的一根小于1,另一根大于2,求实数k的取值范围。
5.设A={x ,其中x R,如果A B=B,求实数a的取值范围。
6.设全集U={x },集合A={x },B={ x2+px+12=0},且(CUA) B={1,4,3,5},求实数P、q的值。
7.若不等式x2-ax+b<0的解集是{ },求不等式bx2-ax+1>0的解集。
8.集合A={(x,y) },集合B={(x,y) ,且0 },又A ,求实数m的取值范围。
第一单元 集合
一、 选择题
题号 1 2 3 4 5 6 7 8 9 10
答案 B C B C B C B C D A
题号 11 12 13 14 15 16 17 18 19 20
答案 D A A D C D A D A B
二、 填空题答案
1.{(x,y) } 2.0, 3.{x ,或x 3} 4.{ } 5. ,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c};除去{a,b,c}外所有子集;除去 及{a,b,c}外的所有子集 6.{2,3};{2,3} 7.{ } 8.{1,5,9,11} 9.{等腰直角三角形};{等腰或直角三角形},{斜三角形},{不等边三角形},{既非等腰也非直角三角形}。 10.(1) (A B) (2)[(CUA) (CUB)] ;(3)(A B) (CUC)
三、解答题
1.m=2×3=6 2.{a } 3.a=-1
4. 提示:令f(1)<0 且f(2)<0解得
5.提示:A={0,-4},又A B=B,所以B A
(Ⅰ)B= 时, 4(a+1)2-4(a2-1)<0,得a<-1
(Ⅱ)B={0}或B={-4}时, 0 得a=-1
(Ⅲ)B={0,-4}, 解得a=1
综上所述实数a=1 或a -1
6.U={1,2,3,4,5} A={1,4}或A={2,3} CuA={2,3,5}或{1,4,5} B={3,4}(CUA) B=(1,3,4,5),又 B={3,4} CUA={1,4,5} 故A只有等于集合{2,3}
P=-(3+4)=-7 q=2×3=6
7.方程x2-ax-b=0的解集为{2,3},由韦达定理a=2+3=5,b=2×3=6,不等式bx2-ax+1>0化为6x2-5x+1>0 解得{x }
8.由A B 知方程组
得x2+(m-1)x=0 在0 x 内有解, 即m 3或m -1。
若 3,则x1+x2=1-m<0,x1x2=1,所以方程只有负根。
若m -1,x1+x2=1-m>0,x1x2=1,所以方程有两正根,且两根均为1或两根一个大于1,一个小于1,即至少有一根在[0,2]内。
因此{m <m -1}。
关于“求:人教版数学必修一A版教案”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
评论列表(3条)
我是奥特号的签约作者“张简子斌”
本文概览:网上有关“求:人教版数学必修一A版教案”话题很是火热,小编也是针对求:人教版数学必修一A版教案寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助...
文章不错《求:人教版数学必修一A版教案》内容很有帮助